概要

音響光学素子(Acousto Optic Device)は、レーザ装置内などで使われるデバイスで、強度変調あるいはビーム位置の電気的制御を行います。音響光学素子は、結晶を圧電素子で振動させ、結晶の中に疎密の定常波を作り、これを回折格子として利用する素子です。このときできる格子幅は結晶にかける振動周波数で制御できるため、できた回折格子で曲げられる光の角度も制御できます。回折格子を作るために結晶にかける振動の周波数は数十MHzから数百MHzで、それを数十kHz変調することで、ビームの高速のスキャンも可能です。

原理

ある媒体内にレーザ光線と音響波が存在するとき、すべての光学媒体において音響光学効果が起こります。音響波が光学 媒体中に入ると、正弦格子(グレーティング)のように作用するある屈折率を持った波が生じます。
入射レーザ光がこのグレーティングを通過するとき、いくつかの次元(オーダー)に回折されます。回折現象とは2本以上の接近したスリットにレーザー光線などを当てると、隣のスリット同士から出る光が干渉し合い、一定の方向の光が強くなる現象です。適切に素子を設計すれば、1次回折光線に最大効率を持たせることができます。この光線は高い周波数ほど偏向角は大きくなります。

構造

様々な音響光学媒体の選択は、波長(光学透過範囲)、偏光、パワー密度などのレーザのパラメータにより決定されます。
音響光学媒体として、可視および近赤外領域では、主にガリウムリン、二酸化テルル、インジウムリン、カルコゲナイトガラスや溶融石英が使用されます。一方の、赤外領域では、ゲルマニウムが使われます。
AOMで使用される結晶は、光学研磨され金属圧縮接着により接合されます。デバイスとして、1GHz レベルの共振周波数まで入力できるようになっています。

応用

開発当時、音響光学素子は、おなじく開発が進む光ファイバー通信で主にスイッチとして脚光を浴びていました。2つのファイバー間にAOMを入れ、AOMをオン/オフすることで光の方向が変わるため、スイッチとして利用できました。
また、別の応用として、AODを使ったレーザー顕微鏡もありました。この顕微鏡は、機械的なミラーのスキャン方式が発表されるまで、世界で唯一の動画観察ができる共焦点レーザー顕微鏡でした。スイッチとして使う場合は、問題となりませんでしたが、レーザー顕微鏡の光源として使用するには、スキャンの均質性やデバイスの物理的な大きさが課題となりました。また、ミラーと違い、点光源から出た光を点光源に戻すこと(デスキャン)ができません。ミラーなら点光源から出た入射光を走査させても、反射光は同じ経路を戻ります。AOMの場合も光学部品を追加して、点光源に戻すことができますが、反射光の経路が通る光学部品の数が多くなれば、それだけ歪みが増えて、部品点数が増えるという欠点もありました。

さいごに

AODは、高速性を有する光路制御デバイスです。

開発当初は、主にレーザーのスイッチングとして注目を浴びたり、動画観察ができるレーザー顕微鏡つぃて利用されました。今後は、ハイスピードカメラや高速なパルス信号を送るデバイスとしての活躍もあるかもしれません。

参考


0件のコメント

コメントを残す

アバタープレースホルダー

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA