概要

光導波路(optical waveguide)は、光を特定の経路に沿って伝搬させるための構造です。これは、光ファイバー通信や光集積回路(光IC)など、多くの光技術において重要な役割を果たします。

構成

光導波路は主に以下の3つの部分から構成されています。

  • コア(Core): 高い屈折率を持つ部分で、光が伝搬する経路です。
  • クラッド(Cladding): コアを取り囲む低い屈折率の層で、光の漏れを防ぎ、全反射を促進します。
  • バッファ(Buffer): (場合によっては)外部環境から保護するための層です。

全反射

光導波路の動作原理は、主に屈折率の異なる材料間での光の反射と屈折に基づいています。
光が異なる屈折率を持つ媒質間を通過する際、その角度は以下のスネルの法則に従います。(\(n_1\)と\(n_2\)はそれぞれの媒質の屈折率、 \(\theta_1\)と\(\theta_2\)は入射角と屈折角)$$n_1\rm{sin}\theta_1=n_2\rm{sin}\theta_2$$
高い屈折率の媒質(コア)から低い屈折率の媒質(クラッド)へ光が進む場合、入射角がある臨界角以上になると、光は全反射し、クラッドに進まずコア内に留まります。この臨界角は以下の式により表すことができます。
$$\theta_c=\rm{sin}^{-1}\left(\frac{n_2}{n_1}\right)$$

モード

光導波路内を伝搬する光には「モード」と呼ばれる特定のパターンがあります。導波路の設計やサイズにより、伝搬するモードの種類や数が決まります。

  • 単一モード(Single-mode)導波路: 1つのモードのみが伝搬する構造で、高速かつ長距離通信に適しています。光ファイバー通信で一般的です。
  • 多モード(Multi-mode)導波路: 複数のモードが伝搬する構造で、データセンター内部などで短距離通信に使用されます。

減衰と分散

光導波路内での光の伝搬には、減衰と分散の問題があります。

  • 減衰: 光の強度が距離とともに減少する現象。材料の不純物や吸収、散乱が原因です。
  • 分散: 光パルスの広がりにより、信号が歪む現象。異なる波長の光が異なる速度で伝搬するためです。

種類

代表的な光導波路の種類を以下に示します。

光ファイバー

光ファイバーは、最も一般的な光導波路で、長距離通信に広く使用されています。その中でも大きく2つに大別されます。
単一モードファイバーはコアの直径が非常に小さく、通常8~10ミクロン程度です。1つのモードのみが伝搬し、長距離通信や高速データ伝送に適しており、インターネットのバックボーンなどに使用されます。
多モードファイバーはコアの直径が50~100ミクロンと大きいです。複数のモードが伝搬するため、モード間分散が発生しやすく、短距離通信に適しており、データセンター内やLANで使用されます。

平面光導波路

平面光導波路は、平面状の基板上に形成された導波路で、光集積回路(PIC)などで使用されます。
シリコンフォトニクスはシリコンを基材とする導波路で、CMOSプロセスと互換性があり、電子回路と光回路の統合が容易です。高速データ通信、データセンター、光コンピューティングなどに使用されます。
高分子光導波路は高分子材料(ポリマー)で作られた導波路です。柔軟性があり、曲げやすく、大面積に対応可能です。フレキシブルディスプレイ、センサー、バイオフォトニクスなどに使用されます。

ナノ導波路

ナノ導波路は、ナノスケールの寸法を持つ導波路で、非常に高密度な光回路を実現できます。高い集積度を持ち、量子ドットやナノ粒子と組み合わせて使用されることが多いです。ナノフォトニクス、バイオセンシング、量子通信などに使用されます。

プラズモニック導波路

プラズモニック導波路は、金属表面でのプラズモン共鳴を利用して光を伝搬させます。金属ナノ構造を利用し、光と電子の相互作用を強くする設計です。光の波長以下の寸法で光を閉じ込めることができ、ナノスケールでの光操作が可能です。ナノフォトニクス、光センサー、高密度光データストレージなどに使用されます。

導波管型導波路

導波管型導波路は、基板上に隆起した形状の導波路です。基板上にエッチングや堆積によって形成された隆起部分がコアとなります。高い製造精度が必要ですが、損失が少なく高効率です。集積フォトニクスデバイス、レーザー光源、光スイッチングデバイスなどに使用されます。

今後の展望

光導波路技術は、光通信やセンサー技術などの分野で重要な役割を果たしており、今後も多くの進展が期待されています。

高速通信とデータセンター

5Gの普及と6Gの研究が進む中で、光導波路はバックホールやフロントホールでの高速データ伝送に不可欠です。またデータセンターでは、大量のデータを低遅延で処理するために、シリコンフォトニクスを利用した光導波路が求められています。これは、電力消費の削減と通信速度の向上を両立します。

シリコンフォトニクス

シリコンフォトニクスは、既存のCMOSプロセスと互換性があり、電子回路と光回路を同一基板上に統合することが可能です。これにより、光コンピューティングや高度な光信号処理デバイスが実現します。
また、シリコンフォトニクス技術の進展により、大規模生産が可能となり、コストが低減されます。これにより、より広範なアプリケーションでの利用が進むことが期待されます。

ナノフォトニクス

ナノフォトニクス技術を用いることで、光回路のさらなる小型化と高集積化が可能となります。より高密度な光集積回路が実現し、次世代のコンピュータチップに組み込まれることが期待されます。さらに、ナノスケールの光導波路は、量子ドットやナノ粒子と組み合わせることで、量子ビットの操作や量子情報処理に利用されます。これにより、量子コンピューティングの実用化が進むでしょう。

プラズモニック導波路

プラズモニック導波路は、光をナノスケールで操作できるため、データストレージやセンサー技術での高密度化が期待されます。さらに、極めて高感度なバイオセンサーを実現することも可能です。これにより、医療診断や環境モニタリングの精度が向上します。

新材料と製造技術

グラフェンやその他の2次元材料を用いた光導波路は、高い光伝導性と低損失を持ち、次世代の高速データ通信やセンサー技術に応用されます。また、ナノインプリントリソグラフィーなどの先進的な製造技術により、光導波路の微細構造の作製が可能となり、性能が向上します。

環境と持続可能性

光導波路技術の進展により、低消費電力の光デバイスが開発され、データセンターや通信ネットワークのエネルギー効率の向上が期待されます。

参考

  1. 3分でわかる技術の超キホン 光導波路の基礎知識・要点解説《種類/原理と構造/モードなど》
  2. 超小型 ・ 高密度集積に向けた光導波路技術

0件のコメント

コメントを残す

アバタープレースホルダー

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA