概要
光干渉断層計(Optical Coherence Tomography, OCT)は、光を用いて物体の内部構造を非侵襲的に三次元的に描写する画像診断技術です。OCTは、特に医療分野で広く利用されており、眼科や皮膚科をはじめ、血管の構造や組織の層構造を高解像度で観察することが可能です。光の干渉現象を利用して、ミクロ単位での組織構造を可視化するため、診断や研究において非常に重要な役割を果たしています。
特徴
長所
OCTの最大の長所は、その高解像度です。従来の超音波やX線技術と比較して、OCTは数ミクロンの精度で組織構造を描写できるため、非常に細かい構造の観察が可能です。また、非侵襲的であるため、患者に対する負担が少なく、繰り返し測定を行うことができます。さらに、リアルタイムでの画像取得が可能であるため、動的な観察にも適しています。
短所
一方で、OCTにはいくつかの短所も存在します。例えば、光の透過性が低い組織や血液などの強い散乱を持つ媒体では、画像の深部まで詳細に観察することが難しくなります。また、視野が狭いため、一度に観察できる範囲が限定されることが多く、大規模な構造の全体像を把握するには不向きです。さらに、装置が高価であるため、導入や維持にコストがかかる点も課題となります。
他の手法との違い
OCTは、超音波画像診断(エコー)や磁気共鳴画像(MRI)といった他の画像診断技術と比較されることが多いです。エコーは音波を使用して組織の内部を描写しますが、解像度がOCTよりも低くなります。一方、MRIは優れた組織コントラストと深部描写能力を持っていますが、OCTと比べて撮影時間が長く、リアルタイム性に劣ります。OCTは高解像度とリアルタイム性が求められる場面で特に有効です。
原理
OCTの原理は、低コヒーレンス光を使用した干渉計測に基づいています。低コヒーレンス光とは、短いコヒーレンス長を持つ光であり、干渉が短い距離内でしか起こらない特性を持っています。OCTでは、この光を物体に照射し、反射した光と参照光を干渉させることで、物体内部の深さに対応した干渉信号を得ます。この干渉信号を解析することで、物体内部の断層画像が得られるのです。
具体的には、次のような数式で表されます。
\(I(z)=\int E_s(t-\tau)\cdot E_r(t)dt\)
ここで、\(I(z)\)は干渉強度、\(E_s(t-\tau)\)はサンプル光、\(E_r(t)\)は参照光、\(\tau\)は光路長の差です。この干渉信号をフーリエ変換することで、各深さに対応する画像情報が得られます。
歴史
OCTの技術は、1990 年に山形大丹野教授、1991年にMITのDr. Fujimotoによって初めて発表されました。さらに1996年には 米Humphrey社により世界初の眼底用OCT装置が販売され、それ以来、OCTは急速に進化し、現在では眼科診断のスタンダードなツールとして広く普及しています。また、OCT技術の進歩により、皮膚科や心臓病学、さらには工業分野にも応用が広がり、ますます多様な分野での活用が期待されています。
応用例
眼科
OCTは、特に眼科での利用が広く普及しています。眼底の網膜の構造や疾患を高解像度で観察できるため、緑内障や糖尿病性網膜症の早期発見や進行管理に役立っています。また、角膜の形状や厚さを測定することで、視力矯正手術の適応を評価する際にも用いられます。
皮膚科
皮膚科においてもOCTは有用です。皮膚の層構造を非侵襲的に観察できるため、皮膚がんの早期診断や、湿疹や乾癬などの皮膚疾患の状態をモニタリングするのに役立ちます。皮膚の層ごとの詳細な画像を得ることで、病変の広がりや深さを把握することができます。
心臓病学
OCTは、冠動脈の内部構造を観察するためにも利用されます。冠動脈のプラーク(動脈硬化の原因となる物質)や血管壁の状態を高精度に描写することができ、これにより、狭心症や心筋梗塞のリスクを評価することができます。これらの情報は、治療方針の決定や手術の成功率を高めるために非常に重要です。
今後の展望
OCT技術は今後さらに進化し、新たな応用分野が開拓されると期待されています。特に、人工知能(AI)と組み合わせた画像解析技術の進展により、診断精度の向上や自動診断システムの実現が見込まれます。また、ポータブルなOCT装置の開発が進めば、より多くの医療現場や地域においてOCTが活用されるようになるでしょう。さらに、OCTを用いた新しい研究や治療法の開発も進んでおり、バイオメディカル分野でのOCTの役割はますます重要になると考えられます。
0件のコメント