銅の微細溶接のニーズ

近年、電気電子制御技術の発展に伴って、自動車や電気デバイス、医療デバイスをはじめとする様々な分野において電気的接触を目的とした導電部品の接合の需要が高まっています。このような用途に用いられる接合には加工コスト、接合性能、量産性が極めて重要なポイントとなります。

そこで期待が高まるのが、優れた導電性能を有する銅の微細溶接です。

 

銅溶接の難しさ

銅はその導電性能と同時に非常に高い熱伝導性能(16W/m・K)を有しています。この数値は鉄の約6倍、ステンレスの約24倍にも及びます。そのため、多くの溶接方法では溶接のために局所的に加えられた熱が母材全体に拡散し、溶接材料が十分に溶解しないため、接合不良の原因となってしまいます。

そのまま熱を与え続けると、銅の熱膨張特性及び収縮特性から変形が生じる可能性があります。その結果、冷却時には収縮歪みが溶接部に集中し、割れや変形へと繋がってしまう危険性があります。

一般的にレーザ溶接は、そのスポットの小ささから非常に小さな部分にもアプローチ可能で、優れた溶接方法の一つです。

しかし、銅の反射特性を考慮すると問題が生じます。例えば、1064nmの波長における反射率は90%にも及び、非常に反射しやすい材料であると言えます。反射しやすいということは、それだけ熱が材料に吸収されないということですので、加工効率が悪くなります。

 

532nm波長(緑色)レーザ溶接機

上記で述べた反射率の問題を克服するためには、532nm波長(緑色)レーザを用いることが効果的です。532nm波長レーザの銅への反射率は45%と、1064nmレーザに比べて十分に低く抑えることが可能となります。

532nm波長レーザで溶接を実現するには大きく2つの方法があります。

1つはQスイッチを用いた方法です。短時間で大きなパルス発振をさせて高いエネルギーを与えます。それでも、溶接をするには、十分なパルスエネルギーが得られないことが問題となります。

もう一つは比較的長いパルス幅のYAGレーザを用いる方法です。この方法ではピークパワー1.5kWの532nmレーザを最大5msのパルス幅で出力します。この条件では、350μm厚の銅の溶接を実現できた例もあります。この方法のもう一つの利点はYAGレーザの特性から、光ファイバを通しての輝度の低いレーザパルスの伝送が可能となることです。これにより、レーザの取り回しが容易となり、不安定性の原因となる溶接中心におけるホットスポットの発生を阻止することが可能となります。

 

応用例

銅の微細溶接には様々な応用例があります。

  1. 半導体の相互接続
  2. 平面と円柱の終端接続

レーザビームの低い輝度が利点となり、部品の突き合わせ許容範囲が広がります。そのため、ワイヤの円形の表面と平坦な端子との結合において、信頼性のある溶接を実現できます。

  1. ワイヤと平面端子との接合
  2. リードフレームの接続

非接触方式のレーザー溶接は量産に最適であるため、品質及び速度が重要視されるリードフレームの生産においては非常に有効な手段となります。

 

参考文献

  1. レーザーによる銅の微細溶接
  2. 銅の微細レーザ溶接における光吸収特性と溶け込み深さの安定化に関する検討
  3. 銅の溶接が難しい理由と銅の溶接事例

0件のコメント

コメントを残す

アバタープレースホルダー

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA